Introduction to Nanomedicines: Basic Concept and Applications
The application of nanotechnology in the medical field has grown significantly. Nanomaterials are being used for the diagnosis, prevention and treatment of diseases. This chapter is comprised of three sections. First section elaborates the concept and principle of nanomedicine. It also includes the advantages and disadvantages of nanomedicines. The second section discusses the applications of nanomaterials in bioimaging, drug delivery, nanozyme and biosensing. The last section is focused on the potential risks and challenges in the clinical translation of nanomedicines.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 117.69 Price includes VAT (France)
Softcover Book EUR 147.69 Price includes VAT (France)
Hardcover Book EUR 147.69 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Introduction to Nanomedicine
Chapter © 2023
Nanomedicine and Its Potential Therapeutic and Diagnostic Applications in Human Pathologies
Chapter © 2022
Nanobiotechnology and Its Application in Nanomedicine: An Overview
Chapter © 2020
References
- Accomasso, L., Cristallini, C., & Giachino, C. (2018). Risk assessment and risk minimization in nanomedicine: A need for predictive, alternative and 3Rs strategies. Frontiers in Pharmacology, 9, 228. ArticlePubMedPubMed CentralCASGoogle Scholar
- Afzal, M., Ameeduzzafar, Alharbi, K. S., Alruwaili, N. K., Al-Abassi, F. A., Al-Malki, A. A. L., et al. (2019). Nanomedicine in treatment of breast cancer—a challenge to conventional therapy. Seminars in Cancer Biology, 1, 31870940. Google Scholar
- Ahmad, U., Ahmad, Z., Khan, A. A., Akhtar, J., Singh, S. P., & Ahmad, F. J. (2018). Strategies in development and delivery of nanotechnology based cosmetic products. Drug Research, 68(10), 545–552. ArticleCASPubMedGoogle Scholar
- Albertazzi, L., Gherardini, L., Brondi, M., Sulis Sato, S., Bifone, A., Pizzorusso, T., et al. (2013). In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Molecular Pharmaceutics, 10(1), 249–260. ArticleCASPubMedGoogle Scholar
- Avasthi, A., Caro, C., Pozo-Torres, E., Leal, M. P., & García-Martín, M. L. (2020). Magnetic nanoparticles as MRI contrast agents. Topics in Current Chemistry, 378(3), 40. ArticleCASPubMedGoogle Scholar
- Azzawi, M., Seifalian, A., & Ahmed, W. (2016). Nanotechnology for the diagnosis and treatment of diseases. Nanomedicine, 11(16), 2025–2027. ArticleCASPubMedGoogle Scholar
- Baggaley, E., Sazanovich, I. V., Williams, J. A. G., Haycock, J. W., Botchway, S. W., & Weinstein, J. A. (2014). Two-photon phosphorescence lifetime imaging of cells and tissues using a long-lived cyclometallated Npyridyl^Cphenyl^Npyridyl Pt(ii) complex. RSC Advances, 4(66), 35003–35008. ArticleCASGoogle Scholar
- Bawa, R., & Johnson, S. (2007). The ethical dimensions of nanomedicine. Medical Clinics of North America, 91(5), 881–887. ArticlePubMedGoogle Scholar
- Borm, P. J. A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3(1), 11. ArticlePubMedPubMed CentralCASGoogle Scholar
- Briguori, C., Colombo, A., Airoldi, F., Melzi, G., Michev, I., Carlino, M., et al. (2006). Gadolinium-based contrast agents and nephrotoxicity in patients undergoing coronary artery procedures. Catheterization and Cardiovascular Interventions, 67(2), 175–180. ArticlePubMedGoogle Scholar
- Cadkova, M., Kovarova, A., Dvorakova, V., Metelka, R., Bilkova, Z., & Korecka, L. (2018). Electrochemical quantum dots-based magneto-immunoassay for detection of HE4 protein on metal film-modified screen-printed carbon electrodes. Talanta, 182, 111–115. ArticleCASPubMedGoogle Scholar
- Chang, E. H., Harford, J. B., Eaton, M. A. W., Boisseau, P. M., Dube, A., Hayeshi, R., et al. (2015). Nanomedicine: Past, present and future—a global perspective. Biochemical and Biophysical Research Communications, 468(3), 511–517. ArticleCASPubMedGoogle Scholar
- Chen, M., & Yin, M. (2014). Design and development of fluorescent nanostructures for bioimaging. Progress in Polymer Science, 39(2), 365–395. ArticleCASGoogle Scholar
- Chen, Y., Chen, H., Zhang, S., Chen, F., Sun, S., He, Q., et al. (2012). Structure-property relationships in manganese oxide - mesoporous silica nanoparticles used for T 1-weighted MRI and simultaneous anti-cancer drug delivery. Biomaterials, 33(7), 2388–2398. ArticleCASPubMedGoogle Scholar
- Chen, R., Ling, D., Zhao, L., Wang, S., Liu, Y., Bai, R., et al. (2015). Parallel comparative studies on mouse toxicity of oxide nanoparticle- and gadolinium-based T1 MRI contrast agents. ACS Nano, 9(12), 12425–12435. ArticleCASPubMedGoogle Scholar
- Chi, X., Liu, K., Luo, X., Yin, Z., Lin, H., & Gao, J. (2020). Recent advances of nanomedicines for liver cancer therapy. Journal of Materials Chemistry B, 8(17), 3747–3771. ArticleCASPubMedGoogle Scholar
- Chountoulesi, M., Naziris, N., Pippa, N., Pispas, S., & Demetzos, C. (2020). Stimuli-responsive nanocarriers for drug delivery. In N. Pippa & C. A. Demetzos (Eds.), Micro and nano technologies (pp. 99–121). Google Scholar
- Craciun, I., Gunkel-Grabole, G., Belluati, A., Palivan, C. G., & Meier, W. (2017). Expanding the potential of MRI contrast agents through multifunctional polymeric nanocarriers. Nanomedicine, 12(7), 811–817. ArticleCASPubMedGoogle Scholar
- Debnath, K., Jana, N. R., & Jana, N. R. (2019). Quercetin encapsulated polymer nanoparticle for inhibiting intracellular polyglutamine aggregation. ACS Applied Bio Materials, 2(12), 5298–5305. ArticleCASPubMedGoogle Scholar
- Defrates, K., Markiewicz, T., Gallo, P., Rack, A., Weyhmiller, A., Jarmusik, B., et al. (2018). Protein polymer-based nanoparticles: Fabrication and medical applications. International Journal of Molecular Sciences, 19, 1–20. ArticleCASGoogle Scholar
- Deka, K., Guleria, A., Kumar, D., Biswas, J., Lodha, S., Kaushik, S. D., et al. (2019). Janus nanoparticles for contrast enhancement of T1–T2 dual mode magnetic resonance imaging. Dalton Transactions, 48(3), 1075–1083. ArticleCASPubMedGoogle Scholar
- Di Silvio, D., Martínez-Moro, M., Salvador, C., de los Angeles Ramirez, M., Caceres-Velez, P. R., Ortore, M. G., et al. (2019). Self-assembly of poly(allylamine)/siRNA nanoparticles, their intracellular fate and siRNA delivery. Journal of Colloid and Interface Science, 557, 757–766. ArticlePubMedCASGoogle Scholar
- Dias, A. P., da Silva Santos, S., da Silva, J. V., Parise-Filho, R., Igne Ferreira, E., El Seoud, O., et al. (2020). Dendrimers in the context of nanomedicine. International Journal of Pharmaceutics, 573, 118814. ArticleCASPubMedGoogle Scholar
- Duncan, R., & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57(15), 2215–2237. ArticleCASPubMedGoogle Scholar
- El-Sawy, H. S., Al-Abd, A. M., Ahmed, T. A., El-Say, K. M., & Torchilin, V. P. (2018). Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano, 12(11), 10636–10664. ArticleCASPubMedGoogle Scholar
- Erathodiyil, N., & Ying, J. Y. (2011). Functionalization of inorganic nanoparticles for bioimaging applications. Accounts of Chemical Research, 44(10), 925–935. ArticleCASPubMedGoogle Scholar
- Erstad, D. J., Ramsay, I. A., Jordan, V. C., Sojoodi, M., Fuchs, B. C., Tanabe, K. K., et al. (2019). Tumor contrast enhancement and whole-body elimination of the manganese-based magnetic resonance imaging contrast agent Mn-PyC3A. Investigative Radiology, 54(11), 697–703. ArticleCASPubMedPubMed CentralGoogle Scholar
- Fan, K., Wang, H., Xi, J., Liu, Q., Meng, X., Duan, D., et al. (2017). Optimization of Fe3O4 nanozyme activity via single amino acid modification mimicking an enzyme active site. Chemical Communications, 53(2), 424–427. ArticleCASGoogle Scholar
- Fang, Y., Jiang, Y., Zou, Y., Meng, F., Zhang, J., Deng, C., et al. (2017). Targeted glioma chemotherapy by cyclic RGD peptide-functionalized reversibly core-crosslinked multifunctional poly(ethylene glycol)-b-poly(ε-caprolactone) micelles. Acta Biomaterialia, 50, 396–406. ArticleCASPubMedGoogle Scholar
- Farjadian, F., Ghasemi, A., Gohari, O., Roointan, A., Karimi, M., & Hamblin, M. R. (2019). Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine, 14, 93–126. ArticleCASPubMedGoogle Scholar
- Gale, E. M., & Caravan, P. (2018). Gadolinium-free contrast agents for magnetic resonance imaging of the central nervous system. ACS Chemical Neuroscience, 9(3), 395–397. ArticleCASPubMedGoogle Scholar
- Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., et al. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9), 577–583. ArticleCASPubMedGoogle Scholar
- Gayathri, T., Sundaram, N. M., & Kumar, R. A. (2015). Gadolinium oxide nanoparticles for magnetic resonance imaging and cancer theranostics. Journal of Bionanoscience, 15, 409–423. ArticleCASGoogle Scholar
- Ghosh, P., Patwari, J., & Dasgupta, S. (2017). Complexation with human serum albumin facilitates sustained release of morin from polylactic-co-glycolic acid nanoparticles. Journal of Physical Chemistry B, 121(8), 1758–1770. ArticleCASPubMedGoogle Scholar
- Grzelczak, M., Liz-Marzán, L. M., & Klajn, R. (2019). Stimuli-responsive self-assembly of nanoparticles. Chemical Society Reviews, 48(5), 1342–1361. ArticleCASPubMedGoogle Scholar
- Guo, P., Huang, J., & Moses, M. A. (2020). Cancer nanomedicines in an evolving oncology landscape. Trends in Pharmacological Sciences, 41(10), 730–742. ArticlePubMedCASGoogle Scholar
- Holzinger, M., Le Goff, A., & Cosnier, S. (2014). Nanomaterials for biosensing applications: A review. Frontiers in Chemistry, 2, 63. ArticlePubMedPubMed CentralCASGoogle Scholar
- Houdaihed, L., Evans, J. C., & Allen, C. (2018). Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: A promising solution for the treatment of breast cancer. Molecular Pharmaceutics, 15(9), 3672–3681. ArticleCASPubMedGoogle Scholar
- Hua, S., de Matos, M. B. C., Metselaar, J. M., & Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Frontiers in Pharmacology, 17(9), 790. ArticleCASGoogle Scholar
- Jahn, K., Buschmann, V., & Hille, C. (2015). Simultaneous fluorescence and phosphorescence lifetime imaging microscopy in living cells. Scientific Reports, 5(1), 14334. ArticleCASPubMedPubMed CentralGoogle Scholar
- Jangid, A. K., Agraval, H., Gupta, N., Yadav, U. C. S., Sistla, R., Pooja, D., et al. (2019). Designing of fatty acid-surfactant conjugate based nanomicelles of morin hydrate for simultaneously enhancing anticancer activity and oral bioavailability. Colloids and Surfaces B: Biointerfaces, 175, 202–211. ArticleCASPubMedGoogle Scholar
- Jangid, A. K., Patel, K., Jain, P., Patel, S., Gupta, N., Pooja, D., et al. (2020). Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydrate Polymers, 247, 116730. ArticleCASPubMedGoogle Scholar
- Jeong, G. W., Jeong, Y. I., & Nah, J. W. (2019). Triggered doxorubicin release using redox-sensitive hyaluronic acid-g-stearic acid micelles for targeted cancer therapy. Carbohydrate Polymers, 209, 161–171. ArticleCASPubMedGoogle Scholar
- Jerban, S., Chang, E. Y., & Du, J. (2020). Magnetic resonance imaging (MRI) studies of knee joint under mechanical loading: Review. Magnetic Resonance Imaging, 65, 27–36. ArticlePubMedGoogle Scholar
- Jiang, D., Ni, D., Rosenkrans, Z. T., Huang, P., Yan, X., & Cai, W. (2019). Nanozyme: New horizons for responsive biomedical applications. Chemical Society Reviews, 48(14), 3683–3704. ArticleCASPubMedPubMed CentralGoogle Scholar
- Kadari, A., Pooja, D., Gora, R. H., Gudem, S., Kolapalli, V. R. M., Kulhari, H., et al. (2018). Design of multifunctional peptide collaborated and docetaxel loaded lipid nanoparticles for antiglioma therapy. European Journal of Pharmaceutics and Biopharmaceutics, 132, 168–179. ArticleCASPubMedGoogle Scholar
- Kesharwani, P., Banerjee, S., Gupta, U., Cairul, M., Mohd, I., Padhye, S., et al. (2015). PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 18(10), 565–572. ArticleCASGoogle Scholar
- Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 11(7), 908–931. ArticleCASGoogle Scholar
- Kopeček, J., & Yang, J. (2020). Polymer nanomedicines. Advanced Drug Delivery Reviews, 156, 40–64. ArticlePubMedCASPubMed CentralGoogle Scholar
- Kritchenkov, I. S., Elistratova, A. A., Sokolov, V. V., Chelushkin, P. S., Shirmanova, M. V., Lukina, M. M., et al. (2020). A biocompatible phosphorescent Ir(iii) oxygen sensor functionalized with oligo(ethylene glycol) groups: Synthesis, photophysics and application in PLIM experiments. New Journal of Chemistry, 44(25), 10459–10471. ArticleCASGoogle Scholar
- Kulhari, H., Pooja, D., Kota, R., Reddy, T. S., Tabor, R. F., Shukla, R., et al. (2016a). Cyclic RGDfK peptide functionalized polymeric nanocarriers for targeting gemcitabine to ovarian cancer cells. Molecular Pharmaceutics, 13(5), 1491–1500. ArticleCASPubMedGoogle Scholar
- Kulhari, H., Pooja, D., Shrivastava, S., Kuncha, M., Naidu, V. G. M., Bansal, V., et al. (2016b). Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Scientific Reports, 6, 1–13. ArticleCASGoogle Scholar
- Kulhari, H., Pooja, D., Singh, M. K., Kuncha, M., Adams, D. J., & Sistla, R. (2015). Bombesin-conjugated nanoparticles improve the cytotoxic efficacy of docetaxel against gastrin-releasing but androgen-independent prostate cancer. Nanomedicine, 10(18), 2847–2859. ArticleCASPubMedGoogle Scholar
- Laissy, J.-P., Idée, J.-M., Fernandez, P., Floquet, M., Vrtovsnik, F., & Schouman-Claeys, E. (2006). Magnetic resonance imaging in acute and chronic kidney diseases: Present status. Nephron Clinical Practice, 103(2), c50–c57. ArticlePubMedGoogle Scholar
- Lam, C.-W., James, J. T., McCluskey, R., & Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicological Sciences, 77(1), 126–134. ArticleCASPubMedGoogle Scholar
- Ledneva, E., Karie, S., Launay-Vacher, V., Janus, N., & Deray, G. (2009). Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency. Radiology, 250(3), 618–628. ArticlePubMedGoogle Scholar
- Li, J., & Zhu, J.-J. (2013). Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst, 138(9), 2506–2515. ArticleCASPubMedGoogle Scholar
- Li, Z., Sun, Q., Zhu, Y., Tan, B., Xu, Z. P., & Dou, S. X. (2014). Ultra-small fluorescent inorganic nanoparticles for bioimaging. Journal of Materials Chemistry B, 2(19), 2793–2818. ArticleCASPubMedGoogle Scholar
- Li, L., Xing, H., Zhang, J., & Lu, Y. (2019a). Functional DNA molecules enable selective and stimuli-responsive nanoparticles for biomedical applications. Accounts of Chemical Research, 52(9), 2415–2426. ArticleCASPubMedPubMed CentralGoogle Scholar
- Li, W., Fan, G.-C., Gao, F., Cui, Y., Wang, W., & Luo, X. (2019b). High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosensors & Bioelectronics, 127, 64–71. ArticleCASGoogle Scholar
- Li, Z., Xiao, C., Yong, T., Li, Z., Gan, L., & Yang, X. (2020a). Influence of nanomedicine mechanical properties on tumor targeting delivery. Chemical Society Reviews, 49(8), 2273–2290. ArticleCASPubMedGoogle Scholar
- Li, Y., Wu, Q., Kang, M., Song, N., Wang, D., & Tang, B. Z. (2020b). Boosting the photodynamic therapy efficiency by using stimuli-responsive and AIE-featured nanoparticles. Biomaterials, 232, 119749. ArticleCASPubMedGoogle Scholar
- Linkov, I., Satterstrom, F. K., & Corey, L. M. (2008). Nanotoxicology and nanomedicine: Making hard decisions. Nanomedicine, 4(2), 167–171. ArticleCASPubMedGoogle Scholar
- Liu, Y., Chen, Z., Liu, C., Yu, D., Lu, Z., & Zhang, N. (2011). Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials, 32(22), 5167–5176. ArticleCASPubMedGoogle Scholar
- Luo, L., Xu, F., Peng, H., Luo, Y., Tian, X., Battaglia, G., et al. (2020). Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. Journal of Controlled Release, 318, 124–135. ArticleCASPubMedGoogle Scholar
- Mao, W., Yang, X., & Ma, D. (2020). Modular design of stimuli-responsive supramolecular nanocarriers based on pro-guest strategy. ChemNanoMat, 6(1), 118–123. ArticleCASGoogle Scholar
- Masteri-Farahani, M., Ghorbani, F., & Mosleh, N. (2021). Boric acid modified S and N co-doped graphene quantum dots as simple and inexpensive turn-on fluorescent nanosensor for quantification of glucose. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 245, 118892. ArticleCASPubMedGoogle Scholar
- Metselaar, J. M., & Lammers, T. (2020). Challenges in nanomedicine clinical translation. Drug Delivery and Translational Research, 10(3), 721–725. ArticlePubMedPubMed CentralGoogle Scholar
- Middha, E., & Liu, B. (2020). Nanoparticles of organic electronic materials for biomedical applications. ACS Nano, 14(8), 9228–9242. ArticleCASPubMedGoogle Scholar
- Mirza, A. Z., & Siddiqui, F. A. (2014). Nanomedicine and drug delivery: A mini review. International Nano Letters, 4(1), 94. ArticleCASGoogle Scholar
- Mohan, A., Nair, S. V., & Lakshmanan, V. K. (2018). Polymeric nanomicelles for cancer theragnostics. International Journal of Polymeric Materials and Polymeric Biomaterials, 67(2), 119–130. ArticleCASGoogle Scholar
- Mortezazadeh, T., Gholibegloo, E., Alam, N. R., Dehghani, S., Haghgoo, S., Ghanaati, H., et al. (2019). Gadolinium (III) oxide nanoparticles coated with folic acid-functionalized poly(β-cyclodextrin-co-pentetic acid) as a biocompatible targeted nano-contrast agent for cancer diagnostic: In vitro and in vivo studies. Magma, 32(4), 487–500. ArticleCASPubMedGoogle Scholar
- Neves, A. R., Martins, S., Segundo, M. A., & Reis, S. (2016). Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals. Nutrients, 8(3), 1–14. ArticleCASGoogle Scholar
- Nezhadi, S., Saadat, E., Handali, S., & Dorkoosh, F. (2020). Nanomedicine and chemotherapeutics drug delivery: Challenges and opportunities. Journal of Drug Targeting, 10, 1–14. Google Scholar
- Ni, D., Bu, W., Ehlerding, E. B., Cai, W., & Shi, J. (2017). Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chemical Society Reviews, 46(23), 7438–7468. ArticleCASPubMedPubMed CentralGoogle Scholar
- Nooli, M., Chella, N., Kulhari, H., Shastri, N. R., & Sistla, R. (2017). Solid lipid nanoparticles as vesicles for oral delivery of olmesartan medoxomil: Formulation, optimization and in vivo evaluation. Drug Development and Industrial Pharmacy, 43(4), 611–617. ArticleCASPubMedGoogle Scholar
- Oberdörster, G. (2010). Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. Journal of Internal Medicine, 267(1), 89–105. ArticlePubMedCASGoogle Scholar
- Oh, J. Y., Kim, H. S., Palanikumar, L., Go, E. M., Jana, B., Park, S. A., et al. (2018). Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nature Communications, 9(1), 4548. ArticlePubMedPubMed CentralCASGoogle Scholar
- Omar, M. N., Salleh, A. B., Lim, H. N., & Ahmad Tajudin, A. (2016). Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Analytical Biochemistry, 509, 135–141. ArticleCASPubMedGoogle Scholar
- Pangajam, A., Theyagarajan, K., & Dinakaran, K. (2020). Highly sensitive electrochemical detection of E. coli O157:H7 using conductive carbon dot/ZnO nanorod/PANI composite electrode. Sensing and Bio-Sensing Research, 29, 100317. ArticleGoogle Scholar
- Patra, J. K., Das, G., Fraceto, L. F., Vangelie, E., Campos, R., Rodriguez, P., et al. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16, 1–33. ArticleCASGoogle Scholar
- Pooja, D., Panyaram, S., Kulhari, H., Reddy, B., Rachamalla, S. S., & Sistla, R. (2015). Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. International Journal of Biological Macromolecules, 80, 48–56. ArticleCASPubMedGoogle Scholar
- Qiu, C., Julian McClements, D., Jin, Z., Qin, Y., Hu, Y., Xu, X., et al. (2020). Resveratrol-loaded core-shell nanostructured delivery systems: Cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry, 317, 126328. ArticleCASPubMedGoogle Scholar
- Radhakrishnan, R., Pooja, D., Kulhari, H., Gudem, S., Ravuri, H. G., Bhargava, S., et al. (2019). Bombesin conjugated solid lipid nanoparticles for improved delivery of epigallocatechin gallate for breast cancer treatment. Chemistry and Physics of Lipids, 224, 104770. ArticleCASPubMedGoogle Scholar
- Rana, M., Jain, A., Rani, V., & Chowdhury, P. (2020). Glutathione capped core/shell CdSeS/ZnS quantum dots as a medical imaging tool for cancer cells. Inorganic Chemistry Communications, 112, 107723. ArticleCASGoogle Scholar
- Ren, W. X., Han, J., Uhm, S., Jang, Y. J., Kang, C., Kim, J. H., et al. (2015). Recent development of biotin conjugation in biological imaging, sensing, and target delivery. Chemical Communications, 51(52), 10403–10418. ArticleCASPubMedGoogle Scholar
- Resnik, D. B., & Tinkle, S. S. (2007). Ethical issues in clinical trials involving nanomedicine. Contemporary Clinical Trials, 28(4), 433–441. ArticlePubMedGoogle Scholar
- Salata, O. V. (2004). Applications of nanoparticles in biology and medicine. Journal of Nanbiotechnology, 2(1), 3. ArticleGoogle Scholar
- Santra, S., Yang, H., Dutta, D., Stanley, J. T., Holloway, P. H., Tan, W., et al. (2004). TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chemical Communications, 24, 2810–2811. ArticleCASGoogle Scholar
- Santra, S., Dutta, D., & Moudgil, B. M. (2005). Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food and Bioproducts Processing, 83(2), 136–140. ArticleCASGoogle Scholar
- Satalkar, P., Elger, B. S., Hunziker, P., & Shaw, D. (2016). Challenges of clinical translation in nanomedicine: A qualitative study. Nanomedicine, 12(4), 893–900. ArticleCASPubMedGoogle Scholar
- Schieda, N., Blaichman, J. I., Costa, A. F., Glikstein, R., Hurrell, C., James, M., et al. (2018). Gadolinium-based contrast agents in kidney disease: A comprehensive review and clinical practice guideline issued by the Canadian Association of Radiologists. Canadian Journal of Kidney Health and Disease, 5, 2054358118778573. ArticlePubMedPubMed CentralGoogle Scholar
- Selvan, S. T., Tan, T. T. Y., Yi, D. K., & Jana, N. R. (2010). Functional and multifunctional nanoparticles for bioimaging and biosensing. Langmuir, 26(14), 11631–11641. ArticleCASPubMedGoogle Scholar
- Semenova, D., Gernaey, K. V., Morgan, B., & Silina, Y. E. (2020). Towards one-step design of tailored enzymatic nanobiosensors. Analyst, 145(3), 1014–1024. ArticleCASPubMedGoogle Scholar
- Sen, R., Zhdanov, A. V., Hirvonen, L. M., Svihra, P., Andersson-Engels, S., Nomerotski, A., et al. (2020). Characterization of planar phosphorescence based oxygen sensors on a TCSPC-PLIM macro-imager. Sensors and Actuators B: Chemical, 321, 128459. ArticleCASGoogle Scholar
- Sharma, P., Brown, S., Walter, G., Santra, S., & Moudgil, B. (2006). Nanoparticles for bioimaging. Advances in Colloid and Interface Science, 123, 471–485. ArticlePubMedCASGoogle Scholar
- Shcheslavskiy, V. I., Neubauer, A., Bukowiecki, R., Dinter, F., & Becker, W. (2016). Combined fluorescence and phosphorescence lifetime imaging. Applied Physics Letters, 108(9), 91111. ArticleCASGoogle Scholar
- Shehzad, K., Xu, Y., Gao, C., & Duan, X. (2016). Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society Reviews, 45(20), 5541–5588. ArticleCASPubMedGoogle Scholar
- Shi, Y. (2020). Clinical translation of nanomedicine and biomaterials for cancer immunotherapy: Progress and perspectives. Advanced Therapeutics, 3(9), 1900215. ArticleCASGoogle Scholar
- Singh, M. K., Pooja, D., Kulhari, H., Jain, S. K., Sistla, R., & Chauhan, A. S. (2017). Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. European Journal of Pharmaceutical Sciences, 96, 84–92. ArticleCASPubMedGoogle Scholar
- Singh, P., Singh, P., Prakash, R., Rai, S. B., & Singh, S. K. (2020). Colour tunability in a bimodal fluorescent hybrid nanostructure UCNPs@AuNPs@QDs. Current Applied Physics, 20(10), 1150–1155. ArticleGoogle Scholar
- Solaimuthu, A., Vijayan, A. N., Murali, P., & Korrapati, P. S. (2020). Nano-biosensors and their relevance in tissue engineering. Current Opinion in Biomedical Engineering, 13, 84–93. ArticleGoogle Scholar
- Song, W., Zhao, B., Wang, C., Ozaki, Y., & Lu, X. (2019). Functional nanomaterials with unique enzyme-like characteristics for sensing applications. Journal of Materials Chemistry B, 7(6), 850–875. ArticleCASPubMedGoogle Scholar
- Sreejith, S., Ma, X., & Zhao, Y. (2012). Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. Journal of the American Chemical Society, 134(42), 17346–17349. ArticleCASPubMedGoogle Scholar
- Tabaković, A., Kester, M., & Adair, J. H. (2012). Calcium phosphate-based composite nanoparticles in bioimaging and therapeutic delivery applications. WIREs Nanomedicine and Nanobiotechnology, 4(1), 96–112. ArticlePubMedCASGoogle Scholar
- Tagami, T., & Ozeki, T. (2017). Recent trends in clinical trials related to carrier-based drugs. Journal of Pharmaceutical Sciences, 106(9), 2219–2226. ArticleCASPubMedGoogle Scholar
- Tang, L., Fu, L., Zhu, Z., Yang, Y., Sun, B., Shan, W., et al. (2018). Modified mixed nanomicelles with collagen peptides enhanced oral absorption of cucurbitacin b: Preparation and evaluation. Drug Delivery, 25(1), 862–871. ArticleCASPubMedPubMed CentralGoogle Scholar
- Tarhini, M., Greige-Gerges, H., & Elaissari, A. (2017). Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics, 522(1), 172–197. ArticleCASPubMedGoogle Scholar
- Thapa, B., Diaz-Diestra, D., Beltran-Huarac, J., Weiner, B. R., & Morell, G. (2017). Enhanced MRI T2 relaxivity in contrast-probed anchor-free PEGylated iron oxide nanoparticles. Nanoscale Research Letters, 12(1), 312. ArticlePubMedPubMed CentralCASGoogle Scholar
- Tunki, L., Kulhari, H., Vadithe, L. N., Kuncha, M., Bhargava, S., Pooja, D., et al. (2019). Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. European Journal of Pharmaceutical Sciences, 137, 104978. ArticleCASPubMedGoogle Scholar
- Venerando, A., Magro, M., Baratella, D., Ugolotti, J., Zanin, S., Malina, O., et al. (2020). Biotechnological applications of nanostructured hybrids of polyamine carbon quantum dots and iron oxide nanoparticles. Amino Acids, 52(2), 301–311. ArticleCASPubMedGoogle Scholar
- Waddington, D. E. J., Boele, T., Maschmeyer, R., Kuncic, Z., & Rosen, M. S. (2020). High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles. Science Advances, 6(29), eabb0998. ArticleCASPubMedPubMed CentralGoogle Scholar
- Wang, G., Peng, Q., & Li, Y. (2009). Upconversion luminescence of monodisperse CaF2:Yb 3+ /Er 3+ nanocrystals. Journal of the American Chemical Society, 131(40), 14200–14201. ArticleCASPubMedGoogle Scholar
- Wang, X., Liu, J., Qu, R., Wang, Z., & Huang, Q. (2017). The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: Rate analysis and cyclic voltammetry. Scientific Reports, 7(1), 7756. ArticlePubMedPubMed CentralCASGoogle Scholar
- Wang, J., Wang, H., Ramsay, I. A., Erstad, D. J., Fuchs, B. C., Tanabe, K. K., et al. (2018). Manganese-based contrast agents for magnetic resonance imaging of liver tumors: Structure–activity relationships and lead candidate evaluation. Journal of Medicinal Chemistry, 61(19), 8811–8824. ArticleCASPubMedPubMed CentralGoogle Scholar
- Wang, H., Wan, K., & Shi, X. (2019). Recent advances in nanozyme research. Advanced Materials, 31(45), 1805368. ArticleCASGoogle Scholar
- Wang, Y., Schill, K. M., Fry, H. C., & Duncan, T. V. (2020a). A quantum dot nanobiosensor for rapid detection of botulinum neurotoxin serotype E. ACS Sensors, 5(7), 2118–2127. ArticleCASPubMedGoogle Scholar
- Wang, W., Jin, Y., Xu, Z., Liu, X., Bajwa, S. Z., Khan, W. S., et al. (2020b). Stimuli-activatable nanomedicines for chemodynamic therapy of cancer. WIREs Nanomedicine and Nanobiotechnology, 12(4), e1614. ArticlePubMedGoogle Scholar
- Weerathunge, P., Pooja, D., Singh, M., Kulhari, H., Mayes, E. L. H., Bansal, V., et al. (2019). Transferrin-conjugated quasi-cubic SPIONs for cellular receptor profiling and detection of brain cancer. Sensors and Actuators B: Chemical, 297, 126737. ArticleCASGoogle Scholar
- Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093. ArticleCASPubMedGoogle Scholar
- Wen, Y., & Meng, W. S. (2014). Recent in vivo evidences of particle-based delivery of small-interfering RNA (siRNA) into solid tumors. Journal of Pharmaceutical Innovation, 9(2), 158–173. ArticlePubMedPubMed CentralGoogle Scholar
- Wolfbeis, O. S. (2015). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 44(14), 4743–4768. ArticleCASPubMedGoogle Scholar
- Xiao, Y. D., Paudel, R., Liu, J., Ma, C., Zhang, Z. S., & Zhou, S. K. (2016). MRI contrast agents: Classification and application. International Journal of Molecular Medicine, 38(5), 1319–1326. ArticleCASPubMedGoogle Scholar
- Xiong, S., Liu, W., Zhou, Y., Mo, Y., Liu, Y., Chen, X., et al. (2019). Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian Journal of Pharmaceutical Sciences, 15(4), 518–528. ArticlePubMedPubMed CentralGoogle Scholar
- Xu, L., Wang, J., Luo, Q., Chen, G., Ni, F., Zhu, Z., et al. (2020). Highly emissive phosphorescence nanoparticles sensitized by a TADF polymer for time-resolved luminescence imaging. Materials Chemistry Frontiers, 4(8), 2389–2397. ArticleCASGoogle Scholar
- Xue, X., Lindstrom, A., Qu, H., & Li, Y. (2020). Recent advances on small-molecule nanomedicines for cancer treatment. WIREs Nanomedicine and Nanobiotechnology, 12(3), e1607. ArticlePubMedGoogle Scholar
- Yamada, Y., Sato, Y., Nakamura, T., & Harashima, H. (2020). Evolution of drug delivery system from viewpoint of controlled intracellular trafficking and selective tissue targeting toward future nanomedicine. Journal of Controlled Release, 327, 533–545. ArticleCASPubMedPubMed CentralGoogle Scholar
- Yan, F., Bai, Z., Ma, T., Sun, X., Zu, F., Luo, Y., et al. (2019). Surface modification of carbon quantum dots by fluorescein derivative for dual-emission ratiometric fluorescent hypochlorite biosensing and in vivo bioimaging. Sensors and Actuators B: Chemical, 296, 126638. ArticleCASGoogle Scholar
- Yang, H., Tong, Z., Sun, S., & Mao, Z. (2020). Enhancement of tumour penetration by nanomedicines through strategies based on transport processes and barriers. Journal of Controlled Release, 328, 28–44. ArticleCASPubMedGoogle Scholar
- Ye, J., Xu, M., Tian, X., Cai, S., & Zeng, S. (2019). Research advances in the detection of miRNA. Journal of Pharmaceutical Analysis, 9(4), 217–226. ArticlePubMedPubMed CentralGoogle Scholar
- Yen, S. K., Padmanabhan, P., & Selvan, S. T. (2013a). Multifunctional Iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics, 3(12), 986–1003. ArticleCASPubMedPubMed CentralGoogle Scholar
- Yen, S. K., Jańczewski, D., Lakshmi, J. L., Dolmanan, S. B., Tripathy, S., Ho, V. H. B., et al. (2013b). Design and synthesis of polymer-functionalized nir fluorescent dyes–magnetic nanoparticles for bioimaging. ACS Nano, 7(8), 6796–6805. ArticleCASPubMedGoogle Scholar
- Yu, D., Ma, M., Liu, Z., Pi, Z., Du, X., Ren, J., et al. (2020). MOF-encapsulated nanozyme enhanced siRNA combo: Control neural stem cell differentiation and ameliorate cognitive impairments in Alzheimer’s disease model. Biomaterials, 255, 120160. ArticleCASPubMedGoogle Scholar
- Zhang, K., Zhao, Q., Qin, S., Fu, Y., Liu, R., Zhi, J., et al. (2019). Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. Journal of Colloid and Interface Science, 537, 316–324. ArticleCASPubMedGoogle Scholar
- Zhao, M.-X., & Zeng, E.-Z. (2015). Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Research Letters, 10(1), 171. ArticlePubMedPubMed CentralCASGoogle Scholar
- Zhao, J., Zhao, L., Lan, C., & Zhao, S. (2016). Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors and Actuators B: Chemical, 223, 246–251. ArticleCASGoogle Scholar
- Zhao, Z., Xu, K., Fu, C., Liu, H., Lei, M., Bao, J., et al. (2019). Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials, 219, 119379. ArticleCASPubMedGoogle Scholar
- Zhen, X., Qu, R., Chen, W., Wu, W., & Jiang, X. (2021). The development of phosphorescent probes for in vitro and in vivo bioimaging. Biomaterials Science. https://doi.org/10.1039/d0bm00819b
- Zheng, D., Zhao, J., Tao, Y., Liu, J., Wang, L., He, J., et al. (2020). pH and glutathione dual responsive nanoparticles based on Ganoderma lucidum polysaccharide for potential programmable release of three drugs. Chemical Engineering Journal, 389, 124418. ArticleCASGoogle Scholar
- Zhu, X. J., Li, R. F., Xu, L., Yin, H., Chen, L., Yuan, Y., et al. (2019). A novel self-assembled mitochondria-targeting protein nanoparticle acting as theranostic platform for cancer. Small, 15(2), 1803428. ArticleCASGoogle Scholar
- Zou, Y., Sun, Y., Guo, B., Wei, Y., Xia, Y., Huangfu, Z., et al. (2020). α3β1 integrin-targeting polymersomal docetaxel as an advanced nanotherapeutic for nonsmall cell lung cancer treatment. ACS Applied Materials and Interfaces, 12(13), 14905–14913. ArticleCASPubMedGoogle Scholar
Acknowledgement
The authors thank the Central University of Gujarat, Gandhinagar, for providing necessary facilities and support. H.K. acknowledges the Department of Science and Technology, New Delhi, for an INSPIRE faculty award. P.J. and A.K.J. acknowledge the University Grant Commission for PhD fellowships.